Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Neuromuscul Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578900

RESUMO

Background: NEFL encodes for the neurofilament light chain protein. Pathogenic variants in NEFL cause demyelinating, axonal and intermediate forms of Charcot-Marie-Tooth disease (CMT) which present with a varying degree of severity and somatic mutations have not been described yet. Currently, 34 different CMT-causing pathogenic variants in NEFL in 174 patients have been reported. Muscular involvement was also described in CMT2E patients mostly as a secondary effect. Also, there are a few descriptions of a primary muscle vulnerability upon pathogenic NEFL variants. Objectives: To expand the current knowledge on the genetic landscape, clinical presentation and muscle involvement in NEFL-related neurological diseases by retrospective case study and literature review. Methods: We applied in-depth phenotyping of new and already reported cases, molecular genetic testing, light-, electron- and Coherent Anti-Stokes Raman Scattering-microscopic studies and proteomic profiling in addition to in silico modelling of NEFL-variants. Results: We report on a boy with a muscular phenotype (weakness, myalgia and cramps, Z-band alterations and mini-cores in some myofibers) associated with the heterozygous p.(Phe104Val) NEFL-variant, which was previously described in a neuropathy case. Skeletal muscle proteomics findings indicated affection of cytoskeletal proteins. Moreover, we report on two further neuropathic patients (16 years old girl and her father) both carrying the heterozygous p.(Pro8Ser) variant, which has been identified as 15% somatic mosaic in the father. While the daughter presented with altered neurophysiology,neurogenic clump feet and gait disturbances, the father showed clinically only feet deformities. As missense variants affecting proline at amino acid position 8 are leading to neuropathic manifestations of different severities, in silico modelling of these different amino acid substitutions indicated variable pathogenic impact correlating with disease onset. Conclusions: Our findings provide new morphological and biochemical insights into the vulnerability of denervated muscle (upon NEFL-associated neuropathy) as well as novel genetic findings expanding the current knowledge on NEFL-related neuromuscular phenotypes and their clinical manifestations. Along this line, our data show that even subtle expression of somatic NEFL variants can lead to neuromuscular symptoms.

2.
Genes (Basel) ; 15(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540401

RESUMO

Chromosome analysis (CA) and chromosomal microarray analysis (CMA) have been successfully used to diagnose genetic disorders. However, many conditions remain undiagnosed due to limitations in resolution (CA) and detection of only unbalanced events (CMA). Optical genome mapping (OGM) has the potential to address these limitations by capturing both structural variants (SVs) resulting in copy number changes and balanced rearrangements with high resolution. In this study, we investigated OGM's concordance using 87 SVs previously identified by CA, CMA, or Southern blot. Overall, OGM was 98% concordant with only three discordant cases: (1) uncalled translocation with one breakpoint in a centromere; (2) uncalled duplication with breakpoints in the pseudoautosomal region 1; and (3) uncalled mosaic triplication originating from a marker chromosome. OGM provided diagnosis for three previously unsolved cases: (1) disruption of the SON gene due to a balanced reciprocal translocation; (2) disruption of the NBEA gene due to an inverted insertion; (3) disruption of the TSC2 gene due to a mosaic deletion. We show that OGM is a valid method for the detection of many types of SVs in a single assay and is highly concordant with legacy cytogenomic methods; however, it has limited SV detection capabilities in centromeric and pseudoautosomal regions.


Assuntos
Centrômero , Translocação Genética , Humanos , Translocação Genética/genética , Análise em Microsséries , Marcadores Genéticos , Mapeamento Cromossômico , Proteínas de Transporte , Proteínas do Tecido Nervoso
3.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217609

RESUMO

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Humanos , Masculino , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Atrofia Óptica/genética , Proteômica
4.
Front Neurol ; 14: 1276238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125836

RESUMO

Background: Epilepsy is one of the most common and disabling neurological disorders. It is highly prevalent in children with neurodevelopmental delay and syndromic diseases. However, epilepsy can also be the only disease-determining symptom. The exact molecular diagnosis is essential to determine prognosis, comorbidity, and probability of recurrence, and to inform therapeutic decisions. Methods and materials: Here, we describe a prospective cohort study of patients with epilepsy evaluated in seven diagnostic outpatient centers in Germany. Over a period of 2 months, 07/2022 through 08/2022, 304 patients (317 returned result) with seizure-related human phenotype ontology (HPO) were analyzed. Evaluated data included molecular results, phenotype (syndromic and non-syndromic), and sequencing methods. Results: Single exome sequencing (SE) was applied in half of all patients, followed by panel (P) testing (36%) and trio exome sequencing (TE) (14%). Overall, a pathogenic variant (PV) (ACMG cl. 4/5) was identified in 22%; furthermore, a significant number of patients (12%) carried a reported clinically meaningful variant of unknown significance (VUS). The average diagnostic yield in patients ≤ 12 y was higher compared to patients >12 y cf. Figure 2B vs. Figure 3B. This effect was more pronounced in cases, where TE was applied in patients ≤ 12 vs. >12 y [PV (PV + VUS): patients ≤ 12 y: 35% (47%), patients > 12 y: 20% (40%)]. The highest diagnostic yield was achieved by TE in syndromic patients within the age group ≤ 12 y (ACMG classes 4/5 40%). In addition, TE vs. SE had a tendency to result in less VUS in patients ≤ 12 y [SE: 19% (22/117) VUS; TE: 17% (6/36) VUS] but not in patients >12 y [SE: 19% (8/42) VUS; TE: 20% (2/10) VUS]. Finally, diagnostic findings in patients with syndromic vs. non-syndromic symptoms revealed a significant overlap of frequent causes of monogenic epilepsies, including SCN1A, CACNA1A, and SETD1B, confirming the heterogeneity of the associated conditions. Conclusion: In patients with seizures-regardless of the detailed phenotype-a monogenic cause can be frequently identified, often implying a possible change in therapeutic action (36.7% (37/109) of PV/VUS variants); this justifies early and broad application of genetic testing. Our data suggest that the diagnostic yield is highest in exome or trio-exome-based testing, resulting in a molecular diagnosis within 3 weeks, with profound implications for therapeutic strategies and for counseling families and patients regarding prognosis and recurrence risk.

5.
Ther Adv Neurol Disord ; 16: 17562864231213240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152089

RESUMO

Myasthenia gravis (MG), Lambert-Eaton myasthenic syndrome (LEMS), and congenital myasthenic syndromes (CMS) represent an etiologically heterogeneous group of (very) rare chronic diseases. MG and LEMS have an autoimmune-mediated etiology, while CMS are genetic disorders. A (strain dependent) muscle weakness due to neuromuscular transmission disorder is a common feature. Generalized MG requires increasingly differentiated therapeutic strategies that consider the enormous therapeutic developments of recent years. To include the newest therapy recommendations, a comprehensive update of the available German-language guideline 'Diagnostics and therapy of myasthenic syndromes' has been published by the German Neurological society with the aid of an interdisciplinary expert panel. This paper is an adapted translation of the updated and partly newly developed treatment guideline. It defines the rapid achievement of complete disease control in myasthenic patients as a central treatment goal. The use of standard therapies, as well as modern immunotherapeutics, is subject to a staged regimen that takes into account autoantibody status and disease activity. With the advent of modern, fast-acting immunomodulators, disease activity assessment has become pivotal and requires evaluation of the clinical course, including severity and required therapies. Applying MG-specific scores and classifications such as Myasthenia Gravis Activities of Daily Living, Quantitative Myasthenia Gravis, and Myasthenia Gravis Foundation of America allows differentiation between mild/moderate and (highly) active (including refractory) disease. Therapy decisions must consider age, thymic pathology, antibody status, and disease activity. Glucocorticosteroids and the classical immunosuppressants (primarily azathioprine) are the basic immunotherapeutics to treat mild/moderate to (highly) active generalized MG/young MG and ocular MG. Thymectomy is indicated as a treatment for thymoma-associated MG and generalized MG with acetylcholine receptor antibody (AChR-Ab)-positive status. In (highly) active generalized MG, complement inhibitors (currently eculizumab and ravulizumab) or neonatal Fc receptor modulators (currently efgartigimod) are recommended for AChR-Ab-positive status and rituximab for muscle-specific receptor tyrosine kinase (MuSK)-Ab-positive status. Specific treatment for myasthenic crises requires plasmapheresis, immunoadsorption, or IVIG. Specific aspects of ocular, juvenile, and congenital myasthenia are highlighted. The guideline will be further developed based on new study results for other immunomodulators and biomarkers that aid the accurate measurement of disease activity.

6.
J Neuromuscul Dis ; 10(5): 835-846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424474

RESUMO

BACKGROUND: The importance of early diagnosis of 5q-Spinal muscular atrophy (5q-SMA) has heightened as early intervention can significantly improve clinical outcomes. In 96% of cases, 5q-SMA is caused by a homozygous deletion of SMN1. Around 4 % of patients carry a SMN1 deletion and a single-nucleotide variant (SNV) on the other allele. Traditionally, diagnosis is based on multiplex ligation probe amplification (MLPA) to detect homozygous or heterozygous exon 7 deletions in SMN1. Due to high homologies within the SMN1/SMN2 locus, sequence analysis to identify SNVs of the SMN1 gene is unreliable by standard Sanger or short-read next-generation sequencing (srNGS) methods. OBJECTIVE: The objective was to overcome the limitations in high-throughput srNGS with the aim of providing SMA patients with a fast and reliable diagnosis to enable their timely therapy. METHODS: A bioinformatics workflow to detect homozygous SMN1 deletions and SMN1 SNVs on srNGS analysis was applied to diagnostic whole exome and panel testing for suggested neuromuscular disorders (1684 patients) and to fetal samples in prenatal diagnostics (260 patients). SNVs were detected by aligning sequencing reads from SMN1 and SMN2 to an SMN1 reference sequence. Homozygous SMN1 deletions were identified by filtering sequence reads for the ,, gene-determining variant" (GDV). RESULTS: 10 patients were diagnosed with 5q-SMA based on (i) SMN1 deletion and hemizygous SNV (2 patients), (ii) homozygous SMN1 deletion (6 patients), and (iii) compound heterozygous SNVs in SMN1 (2 patients). CONCLUSIONS: Applying our workflow in srNGS-based panel and whole exome sequencing (WES) is crucial in a clinical laboratory, as otherwise patients with an atypical clinical presentation initially not suspected to suffer from SMA remain undiagnosed.


Assuntos
Atrofia Muscular Espinal , Doenças Neuromusculares , Humanos , Homozigoto , Deleção de Sequência , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Doenças Neuromusculares/genética , Sequenciamento de Nucleotídeos em Larga Escala
7.
Neurol Res Pract ; 5(1): 26, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37287054

RESUMO

Here we report on a patient with Parkinson's Disease and camptocormia due to Myofibrillar Myopathy Type 3. By leading the reader through the clinical reasoning process and highlighting the respective red flags we aim to increase the readers' awareness for the differential diagnosis of camptocormia.

9.
Eur J Hum Genet ; 31(8): 925-930, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188824

RESUMO

Here we report the results of a retrospective germline analysis of 6941 individuals fulfilling the criteria necessary for genetic testing of hereditary breast- and ovarian cancer (HBOC) according to the German S3 or AGO Guidelines. Genetic testing was performed by next-generation sequencing using 123 cancer-associated genes based on the Illumina TruSight® Cancer Sequencing Panel. In 1431 of 6941 cases (20.6%) at least one variant was reported (ACMG/AMP classes 3-5). Of those 56.3% (n = 806) were class 4 or 5 and 43.7% (n = 625) were a class 3 (VUS). We defined a 14 gene HBOC core gene panel and compared this to a national and different internationally recommended gene panels (German Hereditary Breast and Ovarian Cancer Consortium HBOC Consortium, ClinGen expert Panel, Genomics England PanelsApp) in regard of diagnostic yield, revealing a diagnostic range of pathogenic variants (class 4/5) from 7.8 to 11.6% depending on the panel evaluated. With the 14 HBOC core gene panel having a diagnostic yield of pathogenic variants (class 4/5) of 10.8%. Additionally, 66 (1%) pathogenic variants (ACMG/AMP class 4 or 5) were found in genes outside the 14 HBOC core gene set (secondary findings) that would have been missed with the restriction to the analysis of HBOC genes. Furthermore, we evaluated a workflow for a periodic re-evaluation of variants of uncertain clinical significance (VUS) for the improvement of clinical validity of germline genetic testing.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Testes Genéticos , Variação Genética
10.
Brain ; 146(4): 1388-1402, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36100962

RESUMO

Genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) remains a challenge in clinical practice as it cannot be detected by standard sequencing methods despite being the third most common muscular dystrophy. The conventional diagnostic strategy addresses the known genetic parameters of FSHD: the required presence of a permissive haplotype, a size reduction of the D4Z4 repeat of chromosome 4q35 (defining FSHD1) or a pathogenic variant in an epigenetic suppressor gene (consistent with FSHD2). Incomplete penetrance and epistatic effects of the underlying genetic parameters as well as epigenetic parameters (D4Z4 methylation) pose challenges to diagnostic accuracy and hinder prediction of clinical severity. In order to circumvent the known limitations of conventional diagnostics and to complement genetic parameters with epigenetic ones, we developed and validated a multistage diagnostic workflow that consists of a haplotype analysis and a high-throughput methylation profile analysis (FSHD-MPA). FSHD-MPA determines the average global methylation level of the D4Z4 repeat array as well as the regional methylation of the most distal repeat unit by combining bisulphite conversion with next-generation sequencing and a bioinformatics pipeline and uses these as diagnostic parameters. We applied the diagnostic workflow to a cohort of 148 patients and compared the epigenetic parameters based on FSHD-MPA to genetic parameters of conventional genetic testing. In addition, we studied the correlation of repeat length and methylation level within the most distal repeat unit with age-corrected clinical severity and age at disease onset in FSHD patients. The results of our study show that FSHD-MPA is a powerful tool to accurately determine the epigenetic parameters of FSHD, allowing discrimination between FSHD patients and healthy individuals, while simultaneously distinguishing FSHD1 and FSHD2. The strong correlation between methylation level and clinical severity indicates that the methylation level determined by FSHD-MPA accounts for differences in disease severity among individuals with similar genetic parameters. Thus, our findings further confirm that epigenetic parameters rather than genetic parameters represent FSHD disease status and may serve as a valuable biomarker for disease status.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Metilação de DNA/genética , Haplótipos , Cromossomos Humanos Par 4/genética
11.
Brain ; 146(5): 1831-1843, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36227727

RESUMO

Instability of simple DNA repeats has been known as a common cause of hereditary ataxias for over 20 years. Routine genetic diagnostics of these phenotypically similar diseases still rely on an iterative workflow for quantification of repeat units by PCR-based methods of limited precision. We established and validated clinical nanopore Cas9-targeted sequencing, an amplification-free method for simultaneous analysis of 10 repeat loci associated with clinically overlapping hereditary ataxias. The method combines target enrichment by CRISPR-Cas9, Oxford Nanopore long-read sequencing and a bioinformatics pipeline using the tools STRique and Megalodon for parallel detection of length, sequence, methylation and composition of the repeat loci. Clinical nanopore Cas9-targeted sequencing allowed for the precise and parallel analysis of 10 repeat loci associated with adult-onset ataxia and revealed additional parameter such as FMR1 promotor methylation and repeat sequence required for diagnosis at the same time. Using clinical nanopore Cas9-targeted sequencing we analysed 100 clinical samples of undiagnosed ataxia patients and identified causative repeat expansions in 28 patients. Parallel repeat analysis enabled a molecular diagnosis of ataxias independent of preconceptions on the basis of clinical presentation. Biallelic expansions within RFC1 were identified as the most frequent cause of ataxia. We characterized the RFC1 repeat composition of all patients and identified a novel repeat motif, AGGGG. Our results highlight the power of clinical nanopore Cas9-targeted sequencing as a readily expandable workflow for the in-depth analysis and diagnosis of phenotypically overlapping repeat expansion disorders.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Adulto , Humanos , Ataxia/genética , Ataxia Cerebelar/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Proteína do X Frágil de Retardo Mental
12.
Genes (Basel) ; 15(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275596

RESUMO

Fatty acid hydroxylase-associated neurodegeneration (FAHN/SPG35) is caused by pathogenic variants in FA2H and has been linked to a continuum of specific motor and non-motor neurological symptoms, leading to progressive disability. As an ultra-rare disease, its mutational spectrum has not been fully elucidated. Here, we present the prototypical workup of a novel FA2H variant, including clinical and in silico validation. An 18-year-old male patient presented with a history of childhood-onset progressive cognitive impairment, as well as progressive gait disturbance and lower extremity muscle cramps from the age of 15. Additional symptoms included exotropia, dystonia, and limb ataxia. Trio exome sequencing revealed a novel homozygous c.75C>G (p.Cys25Trp) missense variant in the FA2H gene, which was located in the cytochrome b5 heme-binding domain. Evolutionary conservation, prediction models, and structural protein modeling indicated a pathogenic loss of function. Brain imaging showed characteristic features, thus fulfilling the complete multisystem neurodegenerative phenotype of FAHN/SPG35. In summary, we here present a novel FA2H variant and provide prototypical clinical findings and structural analyses underpinning its pathogenicity.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Oxigenases de Função Mista , Paraplegia Espástica Hereditária , Masculino , Humanos , Adolescente , Oxigenases de Função Mista/genética , Imageamento por Ressonância Magnética , Mutação , Transtornos Heredodegenerativos do Sistema Nervoso/genética
13.
Pract Neurol ; 22(6): 518-520, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907633

RESUMO

A man in his 20s gave a 9-year history of recurrent muscle pain and weakness, occurring mostly after exercise, and lasting for up to 2 days. There had been one episode of severe rhabdomyolysis after cold exposure. He also had longstanding hypokalaemia, which was key to his correct diagnosis but was not followed. This case highlights the importance of an appropriately methodical investigation of weak hypokalaemic patients, and the relevance of hypokalaemia as a cause of neuromuscular symptoms not related to muscular channelopathies.


Assuntos
Hipopotassemia , Rabdomiólise , Masculino , Humanos , Hipopotassemia/complicações , Debilidade Muscular/etiologia , Rabdomiólise/etiologia , Paresia
14.
Hum Mutat ; 43(4): 477-486, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35112411

RESUMO

The synthesis of cytochrome c oxidase 2 (SCO2 ) gene encodes for a mitochondrial located metallochaperone essential for the synthesis of the cytochrome c oxidase (COX) subunit 2. Recessive mutations in SCO2 have been reported in several cases with fatal infantile cardioencephalomyopathy with COX deficiency and in only four cases with axonal neuropathy. Here, we identified a homozygous pathogenic variant (c.361G > C; p.[Gly121Arg]) in SCO2 in two brothers with isolated axonal motor neuropathy. To address pathogenicity of the amino acid substitution, biochemical studies were performed and revealed increased level of the mutant SCO2 -protein and dysregulation of COX subunits in leukocytes and moreover unraveled decrease of proteins involved in the manifestation of neuropathies. Hence, our combined data strengthen the concept of SCO2 being causative for a very rare form of axonal neuropathy, expand its molecular genetic spectrum and provide first biochemical insights into the underlying pathophysiology.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas de Transporte/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Irmãos
15.
J Clin Med ; 11(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054066

RESUMO

OBJECTIVE: Amniocentesis, chorionic villi sampling and first trimester combined testing are able to screen for common trisomies 13, 18, and 21 and other atypical chromosomal anomalies (ACA). The most frequent atypical aberrations reported are rare autosomal aneuploidies (RAA) and copy number variations (CNV), which are deletions or duplications of various sizes. We evaluated the clinical outcome of non-invasive prenatal testing (NIPT) results positive for RAA and large CNVs to determine the clinical significance of these abnormal results. METHODS: Genome-wide NIPT was performed on 3664 eligible patient samples at a single genetics center. For patients with positive NIPT reports, the prescribing physician was asked retrospectively to provide clinical follow-up information using a standardized questionnaire. RESULTS: RAAs and CNVs (>7 Mb) were detected in 0.5%, and 0.2% of tested cases, respectively. Follow up on pregnancies with an NIPT-positive result for RAA revealed signs of placental insufficiency or intra-uterine death in 50% of the cases and normal outcome at the time of birth in the other 50% of cases. We showed that CNV testing by NIPT allows for the detection of unbalanced translocations and relevant maternal health conditions. CONCLUSION: NIPT for aneuploidies of all autosomes and large CNVs of at least 7 Mb has a low "non-reportable"-rate (<0.2%) and allows the detection of additional conditions of clinical significance.

16.
Neuromuscul Disord ; 32(1): 65-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937683

RESUMO

Mycosis fungoides (MF) is the most common form of primary cutaneous T-cell lymphoma. Classic MF usually follows a rather benign course over many years or decades, rarely ever leading to fatal extracutaneous organ involvement. Single cases of muscular involvement have been reported. Here we describe a 42-year-old male patient with hair loss and lipoatrophy since six months diagnosed as follicular MF and with a two months history of progressive distal leg weakness. Muscle biopsy and whole body muscle MRI showed an extensive muscular and subcutaneous fatty tissue infiltration. After therapy with topical steroids and acitretin/PUVA, systemic chemotherapy (CHOP) was initiated. The patient suffered from a rapid disease progression with fatal outcome 2.5 years after the first skin lesions, displaying progressive cachexia, muscular atrophy and weakness with scapuloperoneal distribution and cardiac dysfunction. So far, extensive muscular involvement by MF mimicking a distinct muscular phenotype has not been reported.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Adulto , Biópsia , Evolução Fatal , Humanos , Masculino
18.
J Med Genet ; 59(7): 697-705, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321323

RESUMO

BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Criança , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Convulsões/epidemiologia , Convulsões/genética , Síndrome , Sequenciamento do Exoma
19.
Neuromuscul Disord ; 31(11): 1212-1217, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34702657

RESUMO

We report on an adult Turkish patient with mild myopathy with a fiber-type disproportion and mitochondrial disorganization caused by genetic variants in the plectin gene (PLEC). Molecular genetic panel testing revealed two homozygous variants in PLEC (NM_000445.4): c.8306C>G (p.Pro2769Arg) and c.7506 + 5C>G (p. ?) that were classified as variants of unknown significance (class 3) following ACMG guidelines for variant classification in genetic diagnostics. A thorough reassessment of the patient revealed mild skin blistering (epidermolysis bullosa simplex, EBS). This illustrates the importance of deep phenotyping of neuromuscular patients.


Assuntos
Epidermólise Bolhosa Simples/genética , Miotonia Congênita/genética , Plectina/genética , Adulto , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo
20.
Cardiovasc Diagn Ther ; 11(2): 637-649, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33968641

RESUMO

BACKGROUND: Comprehensive genetic analysis yields in a higher diagnostic rate but also in a higher number of secondary findings (SF). American College of Medical Genetics and Genomics (ACMG) published a list of 59 actionable genes for which disease causing sequence variants are recommended to be reported as SF including 27 genes linked to inherited cardiovascular disease (CVD) such as arrhythmia syndromes, cardiomyopathies and vascular and connective tissue disorders. One of the selected conditions represented in the actionable gene list is the arrhythmogenic right ventricle cardiomyopathy (ARVC), an inherited heart muscle disease with a particularly high risk of sudden cardiac death (SCD). Since clinical symptoms are frequently absent before SCD, a genetic finding is a promising option for early diagnosis and possible intervention. However, the variant interpretation and the decision to return a SF is still challenging. METHODS: To determine the frequency of medically actionable SF linked to CVD we analyzed data of 6,605 individuals who underwent high throughput sequencing for noncardiac diagnostic requests. In particular, we critically assessed and classified the variants in the ARVC genes: DSC2, DSG2, DSP, PKP2 and TMEM43 and compared our findings with the population-based genome Aggregation Database (gnomAD) and ARVC-afflicted individuals listed in ClinVar and ARVC database. RESULTS: 1% (69/6,605) of tested individuals carried pathogenic SF in one of the 27 genes linked to CVD, of them 13 individuals (0.2%) carried a pathogenic SF in a ARVC gene. Overall, 582 rare variants were identified in all five ARVC genes, 96% of the variants were missense variants and 4% putative LoF variants (pLoF): frameshift, start/stop-gain/loss, splice-site. Finally, we selected 13 of the 24 pLoF variants as pathogenic SF by careful data interpretation. CONCLUSIONS: Since SF in actionable ARVC genes can allow early detection and prevention of disease and SCD, detected variant must undergo rigorous clinical and laboratory evaluation before it can be described as pathogenic and returned to patients. Returning a SF to a patient should be interdisciplinary, it needs genetic counselling and clinicians experienced in inherited heart disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...